基于高斯混合模型和CNN-BiLSTM-Attn的日前风功率预测

Day-ahead wind power forecasting based on gaussian mixture model and CNN-BiLSTM-Attn

  • 摘要: 随着风电装机占比不断增加,准确预测风力发电机输出功率对于保证电能质量、提升电力系统稳定性具有重要意义。针对风电场风机数据存在的多模式特性、非线性特征及时序相关问题,引入了基于高斯混合模型(Gaussian Mixture Model,GMM)的分组方案,并构建了融合卷积神经网络(Convolutional Neural Network, CNN)、双向长短期记忆网络(Bidirectional Long Short-Term Memory, BiLSTM)和注意力机制(Attention,Attn)的组合日前风功率预测模型。首先,使用 GMM 依据历史风机数据特征将风电机组分成若干机组类型;随后,针对各子机组群建立分组预测的 CNN-BiLSTM-Attn 神经网络模型并进行日前风功率预测,其中 CNN 负责提取风电机组非线性数据的局部特征,BiLSTM 用于捕捉长期依赖关系,Attention 机制对 BiLSTM 提取的特征进行加权处理。通过某风电场数据的验证结果显示,该预测方法优于传统的单一预测算法和其他分组预测方法,为日前风功率预测提供了一种准确且高效的解决方案。

     

    Abstract: With the increasing proportion of wind power installations, accurately predicting the output power of wind turbines is crucial for ensuring power quality and enhancing the stability of power systems. To address the multi-modal characteristics, nonlinear features, and temporal correlation issues in wind farm turbine data, this study introduces a grouping scheme based on the Gaussian Mixture Model (GMM) and develops a combined day ahead wind power forecasting model integrating Convolutional Neural Networks (CNN), Bidirectional Long Short Term Memory (BiLSTM), and the Attention mechanism. First, the GMM is employed to categorize wind turbines into several types based on the characteristics of historical turbine data. Subsequently, a grouped prediction model, CNN-BiLSTM-Attn, is constructed for each subgroup to perform day-ahead wind power forecasting. In this model, CNN extracts local features from the nonlinear data of turbines, BiLSTM captures long-term dependencies, and the Attention mechanism assigns weights to the features extracted by BiLSTM. Validation using data from a wind farm demonstrates that the proposed method outperforms traditional single prediction algorithms and other grouped prediction approaches, providing an accurate and efficient solution for day-ahead wind power forecasting.

     

/

返回文章
返回