无人机赋能海上风电叶片防雷检测创新实践

Innovative practices of lightning protection detection for offshore wind turbine blades empowered by drones

  • 摘要: 随着海上风电装机容量持续提高,作为保障机组安全运行的核心环节,叶片防雷检测面临着效率欠佳、风险较大、成本较高等问题。提出以多旋翼无人机搭载高精度传感器阵列为基础的全自主防雷检测系统,借助毫米级定位控制、多模态数据融合与AI缺陷识别技术,实现接闪器电阻导通性检测、雷击损伤可视化评估和结构形变三维建模。以某海上风电场实测情况做验证,系统将单次检测的时长从传统人工4h 减少至0.5h,效率提升8倍,检测精度达到95%以上,成本较传统人工检测降低40%,还中覆盖100m 以上高空作业盲区。探索将GB/T 36295—2018防雷规范与数字孪生技术融合,构建"检测评估-预警"一体化智能运维体系,对海上风电运维数字化具有工程示范价值。

     

    Abstract: With the continuous expansion of offshore wind power capacity, blade lightning protection inspection—a critical safety measure—faces industry-wide challenges including inefficiency, high risks, and elevated costs. This study proposes a fully autonomous lightning protection detection system utilizing multirotor drones equipped with high-precision sensor arrays. By integrating millimeter-level positioning control, multimodal data fusion, and AI defect recognition technologies, the system achieves three key capabilities: conducting lightning arrester resistance testing, visualizing lightning damage assessment, and creating 3D structural deformation models. Verified through field tests at an offshore wind farm, the system reduces single-inspection time from 4h to 0.5h, achieving an eightfold efficiency improvement with over 95% accuracy. Compared to manual methods, it cuts costs by 40% while addressing blind spots in operations above 100m. The research also pioneers integrating China's GB/T 36295—2018 lightning protection standards with digital twin technology, establishing an integrated "inspection-evaluation-early warning" smart maintenance framework that demonstrates engineering value for digitalized offshore wind power.

     

/

返回文章
返回