基于数据优化和CQR-CNN-BiGRU模型的光伏功率超短期区间预测

  • 摘要: 现有光伏功率区间预测算法通常侧重于提高覆盖率和缩小预测区间,未能充分考虑实际调度中的经济成本和风险成本,从而限制了这些算法在调度决策方面的实际应用。引入了“最优置信度”概念,提出了一种创新的光伏功率区间预测方法,将数据优化与CQR算法以及CNN-BiGRU神经网络模型相结合。首先对经预处理后的光伏功率序列进行优化,采用分解重构的思想,将光伏功率序列分解为趋势分量、周期分量和随机分量;然后结合多个气象因素,分别输入经改进麻雀搜索算法优化的CQR-CNN-BiGRU神经网络中,建立各自的区间预测模型,叠加三个分量的区间预测结果,实现光伏功率的区间预测。仿真结果表明,所提方法的预测区间能够更接近预设的最优置信度,同时能够快速、有效地获得更高质量的预测区间。

     

/

返回文章
返回