高压断路器预防性试验参数异常识别与诊断方法

Abnormal parameter recognition and diagnosis method for preventive tests of high-voltage circuit breakers

  • 摘要: 针对高压断路器预防性试验参数异常识别与诊断问题,提出了一种融合多维特征分析与智能诊断模型的综合方法。通过小波变换对原始信号进行去噪与归一化处理,提取关键时域特征参数,并结合阈值判定与马氏距离分析,实现对单一参数异常和多维关联性异常的辨识。在此基础上,构建了基于专家系统的知识驱动诊断模型与基于支持向量机的数据驱动分类模型,并采用D-S 证据理论对两类诊断结果进行信息融合,提升故障识别的准确性。案例分析表明,所提方法能够有效识别传统阈值法难以发现的早期故障,通过多维度数据协同分析实现故障精确定位,为高压断路器状态评估提供了可靠的技术支持。

     

    Abstract: This study addresses the issue of abnormal parameter identification and diagnosis in preventive tests of high-voltage circuit breakers by proposing a comprehensive approach that integrates multidimensional feature analysis with intelligent diagnostic models. On this basis, a knowledge-driven diagnostic model based on expert systems and a data-driven classification model based on support vector machines are constructed. The case analysis demonstrates that the proposed method can effectively identify early faults that are difficult to detect with traditional threshold methods, achieve precise fault location through the collaborative analysis of multi-dimensional data, and provide reliable technical support for the condition assessment of high-voltage circuit breakers.

     

/

返回文章
返回