多源气象数据驱动下风电出力功率预测模型研究

Wind power forecasting model driven by multi-source meteorological data

  • 摘要: 提出了一种基于长短期记忆网络的多源气象数据融合风电功率预测模型。通过整合风云卫星遥感数据、地面气象站观测及数值天气预报产品,构建了时空特征融合机制。模型采用五折交叉验证策略,在测试集上实现平均绝对误差8.2MW,较随机森林基准降低29.9%。关键创新在于设计了门控自适应模块,有效提升了对风速突变的响应能力。实验表明多源数据融合使预测误差降低24.8%,在强对流天气时段稳定性提高28%。该模型为高波动性新能源场景提供了有效的预测解决方案,具有良好的通用性,可推广应用于其他类型的可再生能源功率预测任务。

     

    Abstract: This study presents an LSTM-based wind power forecasting model enhanced by multi-source meteorological data fusion. By integrating satellite remote sensing, ground observations, and numerical weather prediction, a spatiotemporal fusion framework is established. The model achieves an MAE of 8.2MW, 29.9% lower than the random forest baseline, and shows improved responsiveness to wind fluctuations via a gated adaptive mechanism. Experimental results indicate a 24.8% reduction in prediction error and a 28% gain in stability under convective weather, demonstrating its effectiveness in volatile renewable energy scenarios.

     

/

返回文章
返回