基于CEBoosting算法的乡村级负荷模式切换检测与预测

Detection and prediction of rural load pattern switching based on the CEBoosting algorithm

  • 摘要: 乡村地区的能源结构日益多样化,用户的负荷需求具有显著的季节性和不稳定性,给电力系统的稳定运行带来了挑战。为更好地适应负荷变化,提出了一种基于CEBoosting 的负荷模式切换检测与模型校准方法,通过引入因果熵增强策略,及时识别用户负荷模式的变化节点,并基于最新的用电状态对在线预测模型进行动态校准与更新。该方法利用多个较短时间批次的数据流计算稳健的累积因果熵,以提高模式切换判断的准确性;在识别到状态变化后,进一步通过预测残差对模型参数进行修正,提升预测准确度。在某乡村地区用电负荷数据集上的对比实验表明,CEBoosting 能够有效检测负荷模式切换,并显著降低预测误差(MAPE 和RMSE),相较传统时序预测模型具有更好的适应性与稳定性,为应对复杂负荷变化提供了一种可行的解决方案。

     

    Abstract: The energy structure in rural areas is becoming increasingly diversified, resulting in load demands that are highly seasonal and unstable. To better adapt to such load variations and ensure the stable operation of the power system, this paper proposes a load pattern switching detection and model calibration approach based on the CEBoosting algorithm. By introducing a causation entropy enhancement strategy, the method can effectively identify transition points in user load patterns and dynamically calibrate and update the online prediction model based on the latest consumption states. The algorithm computes a robust cumulative causation entropy using multiple short-time-batch data streams, thereby improving the accuracy of load pattern switching detection. Once a state change is identified, the model parameters are further adjusted using prediction residuals to enhance both the adaptability and accuracy of the model. Comparative experiments conducted on a rural electricity load dataset demonstrate that the CEBoosting algorithm can effectively detect load pattern switching and significantly reduce prediction errors (MAPE and RMSE), outperforming conventional time series forecasting models in both adaptability and stability. The proposed method offers a feasible solution for addressing complex load variations in rural power.

     

/

返回文章
返回